menu

A01 藤井 浩

藤井 浩

公募 A01

所 属

奈良女子大学 研究院自然科学系

役 職

教授

連絡先

fujii@cc.nara-wu.ac.jp

研究室HP

http://www.chem.nara-wu.ac.jp/~fujii/index.html

研究課題

金属酵素の機能発現の分子機構の解明

研究内容

Jacobsen触媒は優れた不斉金属錯体触媒の一つである。Jacobsen触媒は他の不斉触媒と同様に、金属イオン周辺がアシンメトリーな構造になっていると考えられていたが、そのX線構造は左右ほぼ対称な平面構造となっていた。Jacobsen触媒がどのようにしてアシンメトリーな環境を作り出して不斉反応を触媒しているのかは未だ謎で、その機構解明は今後の不斉触媒開発に有用な知見を与える。本申請者らは、Jacobsen触媒が通常のマンガン3価からマンガン4価に酸化され、軸位に配位力の強い配位子が結合すると、マンガンイオン周辺がアシンメトリーな環境になることを見いだした(研究目的欄図2と3参照)。本研究では、この成果を基盤としてJacobsen触媒が構造変化を引き起こす分子機構を解明することをめざす。

専門分野

生物無機化学、磁気共鳴、錯体化学

研究キーワード

不斉酸化、活性種、金属オキソ、酸化剤付加錯体、サレン

研究業績

2020

[18] Unique Electronic Structures of the Highly Ruffled Hemes in Heme-Degrading Enzymes of Staphylococcus aureus, IsdG and IsdI, by Resonance Raman and Electron Paramagnetic Resonance Spectroscopies,
Satoshi Takahashi; Shusuke Nambu; Toshitaka Matsui; Hiroshi Fujii; Haruto Ishikawa; Yasuhisa Mizutani; Kouhei Tsumoto; Masao Ikeda-Saito, Biochemistry, 3918 – 3928, 2020
DOI: 10.1021/acs.biochem.0c00731.
[17] Photo-biohydrogen Production by Photosensitization with Biologically Precipitated Cadmium Sulfide in Hydrogen-Forming Recombinant Escherichia coli,
Yuki Honda; Yuka Shinohara; Motonori Watanabe; Tatsumi Ishihara; Hiroshi Fujii , ChemBioChem., 21, 3389 – 3397, 2020
DOI: 10.1002/cbic.202000385.
[16] Visible light-driven, external mediator-free H2 production by a combination of a photosensitizer and a whole-cell biocatalyst: Escherichia coli expressing [FeFe]-hydrogenase and muturase genes,
Yuki Honda; Yuka Shimonhara; Hiroshi Fujii, Catalysis Science & Technology, 10, 6006 – 6012, 2020
DOI: 10.1039/D0CY01099E.
[15] DFT insight into axial ligand effects on electronic structure and mechanistic reactivity of oxoiron(IV) porphyrin,
Zhifeng Ma; Naoki Nakatani; Hiroshi Fujii; Masahiko Hada, Phys. Chem. Chem Phys., 22, 12173 – 12179, 2020
DOI: 10.1039/D0CP01867H.
[14] Spectroscopic Evidence for Acid-Catalyzed Disproportionation Reaction of Oxoiron(IV) Porphyrin to Oxoiron(IV) Porphyrin π-Cation Radical and Iron(III) Porphyrin,
Kana Nishikawa; Yuki Honda; Hiroshi Fujii, J. Am. Chem. Soc., 142, 4980 – 4984, 2020
DOI: 10.1021/jacs.9b13503 .
[13] Effect of External Electric Fields on the Oxidation Reaction of Olefins by Fe(IV)OCl­Porphyrin Complexes,
Zhifeng Ma; Naoki Nakatani; Hiroshi Fujii; Masahiko Hada, Bull. Chem. Soc. Jpn., 93, 187 – 193, 2020
DOI: 10.1246/bcsj.20190293.

2019

[12] Small Reorganization Energy for Ligand-Centered Electron-Transfer Reduction of Compound I to Compound II in Heme Model Study,
Nami Fukui; Xiao-Xi Li ; Wonwoo Nam ; Shunichi Fukuzumi; Hiroshi Fujii , Inorg. Chem., 58, 8263 – 8266, 2019
DOI: 10.1021/acs.inorgchem.9b01051.
[11] Direct Observation of Primary C–H Bond Oxidation by An Oxido-iron(IV) Porphyrin π-Radical Cation Complex in a Fluorinated Carbon Solvent,
Yuma Morimoto; Yuki, Shimaoka; Yuri, Ishimizu; Hiroshi Fujii; Shinobu Itoh, Angew. Chem. Int. Ed., 58, 10863 – 10866, 2019
DOI: 10.1002/anie.201901608.
[10] Experimental and Theoretical Studies of the Porphyrin Ligand Effect on the Electronic Structure and Reactivity of Oxoiron(IV) porphyrin π-Cation Radical Complexes,
Yuri Ishimizu; Zhifeng Ma; Masahiko Hada; Hiroshi Fujii, J. Biol. Inorg. Chem., 24, 483 – 494, 2019
DOI: 10.1007/s00775-019-01664-3.
[9] Site-Selective Supramolecular Complexation Activates Catalytic Ethane-Oxidation of m-Nitrido-Bridged Iron Porphyrinoid Dimer,
Yasuyuki Yamada; Nozomi Mihara; Hikaru Takaya; Yasutaka Kitagawa; Kazunobu Igawa; Katsuhiko Tomooka ; Hiroshi Fujii; Kentaro Tanaka , Chem. Eur. J., 25, 3369 – 3375, 2019
DOI: 10.1002/chem.201805580.
[8] Substitution Effects on Olefin Epoxidation Catalyzed by Oxoiron(IV) Porphyrin π-Cation Radical Complexes: A DFT Study,
Zhifeng Ma; Kasumi Ukaji; Naoki Nakatani; Hiroshi Fujii; Masahiko Hada, J. Cmput. Chem., 40, 1780 – 1788, 2019
DOI: 10.1002/jcc.25831.

2018

[7] Preparation, Characterization and Reactivity of a Bis-Hypochlorite Adduct of a Chiral Manganese(IV)-Salen Complex,
kuko Araki; Kaoru Fukui; Hiroshi Fujii, Inorg. Chem., 57, 1685 – 1688, 2018.
[6] Critical Factors in Determining the Heterolytic versus Homolytic Bond Cleavage of Terminal Oxidants by Iron(III) Porphyrin Complexes,
Sawako Yokota; Hiroshi Fujii, J. Am. Chem. Soc., 140, 5127 – 5137, 2018.
[5] Coexpression of 5-aminolevulinic Acid Synthase Gene Facilitates Heterologous Production of Thermostable Cytochrome P450, CYP119, in Holo Form in Escherichia coli,
Yuki Honda; Ki Nanasawa; Hiroshi Fujii, ChemBioChem, 19, 2156 – 2159, 2018.

2016

[4] The Origin of Relative Stability of Di-μ-oxo M-M Chiral Salen Complexes [M-M = Ti (IV)-Ti(IV), V(IV)-V(IV), Cr(IV)-Cr(IV) and Mn(IV)-Mn(IV)]: A Quantum-Chemical Analysis,
Radhika Narayanan; Archana Velloth; Takuya Kurahashi; Hiroshi Fujii; Masahiko Hada, Bull. Chem. Soc. Jpn., 89, 447 – 454, 2016.
[3] Participation of Electron-Transfer Process in Rate-Limiting Step of Aromatic Hydroxylation Reactions by Compound I Models of Heme Enzyme,
Maaya Asaka; Hiroshi Fujii, J. Am. Chem. Soc., 138, 8048 – 8051, 2016.
[2] The Functional Role of the structure of the Dioxo-isobacteriochlorin Structure in the Catalytic Site of Cytochrome cd1 for the Reduction of Nitrite,
Hiroshi Fujii; Daisuke Yamaki; Takashi Ogura; Masahiko Hada, Chem. Sci., 7, 2896 – 2906, 2016.
[1] Unique coupling of mono- and dioxygenase chemistries in a single active site promotes heme degradation,
Toshitaka Matsui; Shusuke Nambu; Celia W. Goulding; Satoshi Takahashi; Hiroshi Fujii; Masao Ikeda- Saito, Proc. Natl. Acad. Sci. USA, 113, 3779 – 3784, 2016.