menu

A02 古川 修平

 古川 修平 公募 A02
所 属 京都大学 高等研究院 物質ー細胞統合システム拠点
役 職 教授
連絡先 shuhei.furukawa@icems.kyoto-u.ac.jp
研究室HP www.furukawa.icems.kyoto-u.ac.jp
研究課題 メゾスケール構造制御による多孔性錯体傾斜材料の創成
研究内容 本研究では、金属錯体多面体(MOP)を基盤とする多孔性ゲルを用いて、異方的かつ連続的な密度勾配を有する傾斜機能材料を創成する。特に、MOPを超分子重合する際の自己集合化プロセスにおいて、メゾスケール領域で異方性を導入することで、ゲルネットワーク構造の密度及びトポロジーの制御を行い、マクロ物性との相関を解明する。最終的には、異方的物質輸送、連続的触媒反応、アクチュエータといった傾斜材料特有の機能発現へとつなげる。具体的には、MOPの超分子重合メカニズム(MOP分子の集合―コロイド粒子化―コロイドネットワーク形成)を詳細に解明し、ゾル-ゲル転移する過程において、濃度、遠心力、温度、といった超分子重合に影響を与える化学的・物理的パラメータに異方性を導入することで、結晶性材料では制御が難しい物質内の密度勾配をメゾスケール構造制御によって達成する。

専門分野 錯体化学、材料科学、超分子化学
研究キーワード 多孔性材料、ソフトマター、金属錯体多面体、超分子重合、コロイド

研究業績

2021

[24] Directional asymmetry over multiple length scales in reticular porous materials,
Alexandre Legrand; Zaoming Wang; Javier Troyano; Shuhei Furukawa, Chem. Sci., 12, 18 – 33, 2021
DOI: 10.1039/D0SC05008C.
[23] Dynamic Properties of a Flexible Metal-Organic Framework Exhibiting a Unique ‘Picture Frame’-Like Crystal Morphology,
Kenji Sumida; Nao Horike; Shuhei Furukawa, Nano. Res., 14, 432 – 437, 2021
DOI: 10.1007/s12274-020-3002-7.

2020

[22] Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications,
Arnau Carné-Sánchez; Francisco J. Carmona; Chiwon Kim; Shuhei Furukawa, Chem. Commun., 56, 9750 – 9766, 2020
DOI: 10.1039/D0CC03740K.
[21] Pseudo-5-Fold Symmetrical Ligand Drives Geometric Frustration in Porous Metal-Organic and Hydrogen Bonded Frameworks,
Frederik Haase; Gavin Craig; Mickaele Bonneau; Kunihisa Sugimoto; Shuhei Furukawa, J. Am. Chem. Soc., 142, 32, 13839 – 13845, 2020
DOI: 10.1021/jacs.0c04450.
[20] Beyond Frameworks: Structuring Reticular Materials across Nano, Meso, and Bulk Regimes,
Frederik Haase; Patrick Hirschle; Ralph Freund; Shuhei Furukawa; Zhe Ji; Stefan Wuttke, Angew. Chem. Int. Ed., 59, 50, 22350 – 22370, 2020
DOI: 10.1002/anie.201914461.
[19] Hysteresis in the gas sorption isotherms of metal–organic cages accompanied by subtle changes in molecular packing,
Gavin A. Craig; Patrick Larpent; Hinano Urabe; Alexandre Legrand; Mickaele Bonneau; Shinpei Kusaka; Shuhei Furukawa, Chem. Commun., 56, 3689 – 3692, 2020
DOI: 10.1039/D0CC00932F.
[18] Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation,
Jeremy Dhainaut; Mickaele Bonneau; Ryota Ueoka; Kazuyoshi Kanamori; Shuhei Furukawa, ACS Appl. Mater. Interface, 12, 10983 – 10992, 2020
DOI: 10.1021/acsami.9b22257.
[17] Understanding the role of linker flexibility in soft porous coordination polymers,
Yamil J. Colon; Shuhei Furukawa, Mol. Syst. Des. Eng., 5, 284 – 293, 2020
DOI: 10.1039/C9ME00117D.

2019

[16] Understanding the multiscale self-assembly of metal-organic polyhedra towards functionally graded porous gels,
Alexandre Legrand; Gavin A. Craig; Mickaele Bonneau; Saori Minami; Kenji Urayama; Shuhei Furukawa, Chem. Sci., 10, 10833 – 10842, 2019
DOI: 10.1039/C9SC04543K.
[15] Vapor‐phase linker exchange of the metal‐organic framework ZIF‐8: a solvent‐free approach to post‐synthetic modification,
Joao Marreiros; Lenz Van Dommelen; Guillaume Fleury; Rodrigo de Oliveira-Sliva; Thimothee Stassin; Paul Iacomi; Shuhei Furukawa; Dimitrios Sakellauriou; Philip Llewellyn; Maarten Roeffaers; Rob Ameloot, Angew. Chem. Int. Ed., 131, 18642 – 18646, 2019
DOI: 10.1002/anie.201912088.
[14] MOFBOTS: Metal–Organic‐Framework‐Based Biomedical Microrobots,
Xiaopu Wang; Xiang‐Zhong Chen; Carlos C. J. Alcântara; Semih Sevim; Marcus Hoop,; Anastasia Terzopoulou; Carmela de Marco; Chengzhi Hu; Andrew J. de Mello; Paolo Falcaro; Shuhei Furukawa; Bradley J. Nelson; Josep Puigmartí‐Luis; Salvador Pané, Adv. Mater., 31, 1901592, 2019
DOI: 10.1002/adma.201901592.
[13] Partially fluorinated MIL-101(Cr): from a minuscular structure modification to a huge chemical environment transformation inspected by 129Xe NMR,
Mariana L. Díaz-Ramírez; Elí Sánchez-González; J. Raziel Álvarez; Gerardo A. González Martínez; Satoshi Horike; Kentaro Kadota; Kenji Sumida; Eduardo González-Zamora; MarieAnne Springuel-Huet; Aída Gutiérrez-Alejandre; Vojtech Jancik; Shuhei Furukawa; Susumu Kitagawa; Ilich A. Ibarra; Enrique Lima, J. Mater. Chem. A, 7, 15101 – 15112, 2019
DOI: 10.1039/C9TA02237F.
[12] A Coordinative Solubilizer Method to Fabricate Soft Porous Materials from Insoluble Metal-Organic Polyhedra,
Arnau Carné-Sánchez; Gavin A. Craig; Patrick Larpent; Vincent Guillerm; Kenji Urayama; Daniel Maspoch; Shuhei Furukawa, Angew. Chem. Int. Ed., 58, 6347 – 6350, 2019
DOI: 10.1002/anie.201901668.
[11] Postsynthetic Covalent and Coordination Functionalization of Rhodium(II)-Based Metal–Organic Polyhedra,
Arnau Carné-Sánchez; Jorge Albalad; Thais Grancha; Inhar Imaz; Judith Juanhuix; Patrick Larpent; Shuhei Furukawa; Daniel Maspoch, J. Am. Chem. Soc., 141, 4094 – 4102, 2019
DOI: 10.1021/jacs.8b13593.

2018

[10] Self-assembly of metal–organic polyhedra into supramolecular polymers with intrinsic microporosity,
Arnau Carné-Sánchez; Gavin A. Craig; Patrick Larpent; Takashi Hirose; Masakazu Higuchi; Susumu Kitagawa; Kenji Matsuda; Kenji Urayama; Shuhei Furukawa, Nat. Commun., 9, 2506, 2018
DOI: 10.1038/s41467-018-04834-0.
[9] Coordination Modulation Method to Prepare New MOF-based CO-Releasing Materials,
Francisco Jesus Carmona; Carmen R Maldonado; Shuya Ikemura; Carlos C Romao; Zhehao Huang; Hongyi Xu; Xiaodong Zou; Susumu Kitagawa; Shuhei Furukawa; Elisa Barea, ACS Appl. Mater. Interface, 10, 31158 – 31167, 2018
DOI: 10.1021/acsami.8b11758.
[8] Influence of Nanoscale Structuralisation on the Catalytic Performance of ZIF-8: A Cautionary Surface Catalysis Study,
Oliver Linder-Patton; Thomas de Prinse; Shuhei Furukawa; Stephen G Bell; Kenji Sumida; Christian J Doonan; Christopher J Sumby, CrystEngComm, 20, 4926 – 4934, 2018
DOI: 10.1039/C8CE00746B.
[7] Fighting at the Interface: Structural Evolution during Heteroepitaxial Growth of Cyanometallate Coordination Polymers,
Fengqiong Li; Wei Zhang; Arnau Carne-Sanchez; Yoshihiro Tsujimoto; Susumu Kitagawa; Shuhei Furukawa; Ming Hu, Inorg. Chem., 57, 8701 – 8704, 2018
DOI: 10.1021/acs.inorgchem.8b00959.
[6] Switchable Gate-Opening Effect in Metal-Organic Polyhedra Assemblies Through Solution Processing,
Gavin A. Craig; Patrick Larpent; Shinpei Kusaka; Ryotaro Matsuda; Susumu Kitagawa; Shuhei Furukawa, Chem. Sci., 9, 31, 6463 – 6469, 2018
DOI: 10.1039/C8SC02263A.
[5] Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures,
S. Sevim; A. Sorrenti; C. Franco; S. Furukawa; S. Pané; A. J. deMello; J. Puigmartí-Luis, Chem. Soc. Rev., 47, 3788 – 3803, 2018
DOI: 10.1039/C8CS00025E.
[4] Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules,
Rebeca Sola-Llano; Virginia Martínez-Martínez; Shuhei Furukawa; Yohei Takashima; Iñigo López-Arbeloa, Polymers, 10, 188, 2018
DOI: 10.3390/polym10020188.

2017

[3] Enhanced properties of metal–organic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process,
Suttipong Wannapaiboon; Kenji Sumida; Katharina Dilchert; Min Tu; Susumu Kitagawa; Shuhei Furukawa; Roland A. Fischer, J. Mater. Chem. A, 5, 13665 – 13673, 2017
DOI: 10.1039/C7TA02848B.
[2] Localized Conversion of Metal–Organic Frameworks into Polymer Gels via Light-Induced Click Chemistry,
Sophia Schmitt; Stéphane Diring; Peter G. Weidler; Salma Begum; Stefan Heißler; Susumu Kitagawa; Christof Wöll; Shuhei Furukawa; Manuel Tsotsalas, Chem. Mater., 29, 14, 5982 – 5989, 2017
DOI: 10.1021/acs.chemmater.7b01677.
[1] Photopatterning of fluorescent host–guest carriers through pore activation of metal–organic framework single crystals,
I. Stassen; I. Boldog; C. Steuwe; D. De Vos; M. Roeffaers; S. Furukawa; R. Ameloot, Chem. Commun., 53, 7222 – 7225, 2017
DOI: 10.1039/C7CC02709E.